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             2 de febrero de 2021 
33543 CAMPOS ELECTROMAGNÉTICOS                   GRUPO: 741                                             
                                                                                                               Ciclo Escolar 2021-1        
  
 
                              HORARIO DE CLASE: 
 
 
 
Dr. Enrique Efrén García G.  
eegarcia@uabc.edu.mx 
 
 
 
 
 
 
 
 
 
 

Contenido: 
 
	
  
1. Campos Eléctricos.                                                  

1.1 Fuerzas de Coulomb e Intensidad de Campo Eléctrico. 
1.2 Flujo Eléctrico y Ley de Gauss. 
1.3 Trabajo, Energía y Potencial. 
1.4 Corriente, Conductores y Capacitancia. 
1.5 Ecuaciones de Poisson y Laplace. 

 
 
2. Campos Magnéticos.        

2.1 Ley de Biot-Savart. 
2.2 Ley de Ampère. 
2.3 Densidad de Flujo Magnético y ley de Gauss. 
2.4 Inductancia y Energía Magnética. 

Martes T   9:00 a 11:00 hrs --- 
Viernes C 11:00 a 12:00 hrs --- 
Viernes T 12:00 a 13:00 hrs --- 

Propósito de la Unidad de Aprendizaje 
La unidad de aprendizaje de Campos Electromagnéticos tiene como 
finalidad proporcionar al estudiante el marco teórico clásico del 
concepto de Onda Electromagnética (OE) como solución a la 
ecuación de onda para diferentes materiales; lo cual le permite utilizar 
los conceptos de la Teoría Electromagnética para su aplicación en el 
diseño de dispositivos nanoestructurados, cuyo funcionamiento se 
fundamente en efectos del electromagnetismo.  

Competencia  de la Unidad de Aprendizaje 
Aplicar los conceptos de la Teoría Electromagnética, para dar 
solución a problemas de índole electromagnéticos que involucren el 
diseño de dispositivos nanoestructurados, a través de las técnicas y 
formalismo matemático basado en las ecuaciones de Maxwell, con 
actitud honesta, creativa y con buena disposición al trabajo 
colaborativo.  
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3. Ecuaciones de Maxwell. 

3.1 Ley de Faraday y fem’s inducidas. 
3.2 Ley de Ampère y Corriente de Desplazamiento. 
3.3 Condiciones de Frontera. 
3.4 Ecuaciones de Maxwell. 

 
 
4. Ondas Electromagnéticas. 

4.1 Ecuación de Onda. 
4.2 Propagación en diferentes medios. 
4.3 Condiciones de frontera para incidencia normal. 
4.4 Incidencia oblicua y Ley de Snell. 

 
 
Evaluación: 
 
	
  

Calificación mínima aprobatoria del curso 
 

60.0 (SESENTA) 
 

  

Criterios de evaluación:  
 

  
1. Examen escrito individual: 

 
a. 1er Examen Parcial 
b. 2do Examen Parcial 

 

 
15% 
15% 

2. 100% de Asistencia y participación: 10% 
3. Trabajo de investigación (1 – 2):  10% 

4. Tareas semanales: 
 

50% 
 

                                                TOTAL : 100% 
5. El Examen Ordinario se  exenta si el promedio general del curso 

corresponde a la calificación mínima aprobatoria (60.0).  
Si se presenta el examen ordinario, la calificación final corresponde a la 
calificación obtenida en dicho examen. 
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6. El alumno tendrá derecho a presentar el examen ordinario, si cubre el 80% 
o más de asistencias en clases impartidas.  

7. El alumno tendrá derecho a examen extraordinario, si cubre el 60% o más 
de asistencias en clases impartidas. 

 
Bibliografía recomendada: 
	
  

1. 

Electromagnetics – Third Edition  
Joseph A. Edminister 
Mahmood Nahvi 
McGraw Hill – Schaum’s 
ISBN 978-0-07-163235-5 

  

2. 

Elements of Electromagnetics 
Matthew N. O. Sadiku 
International Fourth Edition 
Oxford University Press  
ISBN 978-0-19-531519-6 

  

3. 
Electromagnetic Theory 
Julius Adams Stratton 
Massachusetts Institute of Technology 
ISBN 9781446517390 

  

4. 
The Electromagnetic Field 
Albert Shadowitz 
Dover Publications, Inc. New York 
ISBN 978-0-486-65660-1 

  

5. 

Electromagnetics 
Crash Course 
Joseph A. Edminister 
Schaum’s easy outlines 
McGraw Hill 
ISBN 0-07-139879-1 

  

6.  

A Student’s Guide to Maxwell’s Equations 
Daniel Fleisch 
Cambridge University Press 
ISBN 978-0-521-70147-1 
 

  

7. Div, Grad, Curl, and all that 
H.M. Schey 
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An informal Text on Vector Calculus 
W. W. Norton & Company 
New York - London 

  
8. http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html 

9. 

Maxwell’s Equations of Electrodynamics 
An Explanation 
David W. Ball 
SPIE 2014 
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Representante	
  de	
  Grupo:	
  	
  
	
  
	
  
_______________________________	
  

	
  



ELECTROSTATIC FIELDS



Introduction
Before we commence our study of electrostatics, it might be helpful to examine briefly
the importance of such study. Electrostatics is fascinating subject that has grown up
in diverse areas of application.

• Electric power transmission, X-ray machine, and lightning protection are asso-
ciate with strong electric field and will required a knowledge of electrostatics to
understand and design suitable equipment.

• The device used in solid-sate electronic are based on electrostatic. These include
resistors, capacitors, and device such as bipolar and field effect transistors, which
are based on control of electron motion by electrostatic fields.

• Almost all peripheral devices, with de exception of magnetic memory, are based
on electrostatic fields. Toch pad, capacitance keyboards, chatode-ray tube, liquid
crystal display, and electrostatics printers are typical examples.

• In medical work, diagnosis is often carried out with the aid of electrostatic, as
incorporated in electrocardiograms, electroencephalograms, and other recording
of the electrical activity of organs include eyes, ears, and stomach.

• In industry, electrostatics is applied in a variety of forms such as paint spraying,
electrodeposition, electrochemical machining, and separation of fine particles.

• Electrostatics is used in agriculture to sort seed, for direct spraying of plant, to
mesure te moisture content in crops, to spin cotton, and for speed baking bread
and smoking meat.



Coulomb’s law and Field Intensity

• Coulomb’s law is and experimental law formulated in 1785 by Charles Augustin

de Coulomb, then colonel in the France army.

• One coulomb is approximately equivalent to 6×1018 electron; it is very large unit

of charge because one electron charge e = −1.6019× 10−19 C.

• Coulomb’s law states that the Force F between two carge Q1 and Q2 is:

1. Along the line joining them

2. Directly proportional to the product Q1Q2 of the charges

3. Inversely proportional to the square of distance R between them.

Expressed mathematically,

F =
kQ1Q2

R2
(1)

where k is the proportionality constant whose value depend on the choice of system of

units. In SI unit, charges Q1 and Q2 are in coulombs (C), the distance R is in meters

(m), and the force F is in newtons (N) so that k = 1/4πε0. The constant ε0 as the

permittivity of free space (in farads per meter) and has the value

ε0 = 8.854× 10−12 ' 10−9

36π
F/m or k = 1

4πε0
m/F



Coulomb’s law and Field Intensity

F =
kQ1Q2

R2
=

Q1Q2

4πε0R2
(2)

If point charges Q1 and Q2 are located at point having position vectors ~r1 and ~r2, then

the force ~F12 on Q2 due Q1, is given by

~F12 =
Q1Q2

4πε0R2
âR12

(3)

where

~R12 = ~r2 − ~r1 (4)

R =| ~R12 | (5)

âR12
=

~R12

R
(6)

Then, we write eq.(3) as

~F12 =
Q1Q2

4πε0R3
~R12 (7)

or

~F12 =
Q1Q2(~r2 − ~r1)

4πε0 | ~r2 − ~r1 |3
(8)



Coulomb’s law and Field Intensity

It is worthwhile to note that

• As shown, the force ~F21 =| ~F12 | âR21
=| ~F12 | (−âR12

)

or ~F12 = −~F21

since âR21
= −âR12

• Like charges (charges of the same sign) repel each other, while unlike charge

attract.

• The distance R between the charged bodies Q1 and Q2 must be large compared

with the linear dimensions of the bodies; that is, Q1 and Q2 must be point charge.

• Q1 and Q2 must be static (at rest).

• The sign of Q1 and Q2 must be taken into account in eq.(3) for likes charges

Q1Q2 > 0. For unlike charges Q1Q2 < 0.



Coulomb’s law and Field Intensity

If we have more than two point charges, we can use the principle of superposition to

determine the force on a particular charge. The principle state that if there are N

charges Q1, Q2, ..., QN located, respectively, at points with position vectors ~r1, ~r2, ..., ~rN
the resultant force ~F on a charge Q located at point ~r is the vector sum of the forces

exerted on Q by each of the charge Q1, Q2, ..., QN . Hence:

~F =
QQ1(~r − ~r1)

4πε0 | ~r − ~r1 |3
+

QQ2(~r − ~r2)

4πε0 | ~r − ~r2 |3
+ ....+

QQN(~r − ~rN)

4πε0 | ~r − ~rN |3
(9)

or

~F =
Q

4πε0

n∑
k=1

Qk(~r − ~rk)
| ~r − ~rk |3

(10)



Coulomb’s law and Field Intensity

We can now introduce the concept of electric field intensity :

The electric field intensity (or electric field strength) ~E is the force per unit charge

when placed in an electric field.

Thus

~E = lim
Q→0

~F

Q
(11)

or simply

~E =
~F

Q
(12)

For Q > 0, the electric field intensity ~E is obviously in the direction of the force ~F and

is measured in newtons per coulomb or volts per meter. The electric field intensity at

point ~r due to a point charge located at ~r′ is readily obtained from eqs.(3) and (12)

as

~E =
Q

4πε0R2
âR =

Q(~r − ~r′)
4πε0 | ~r − ~r′ |3

(13)



Coulomb’s law and Field Intensity

For N point charges Q1, Q2, ..., QN located at ~r1, ~r2, ..., ~rN , the electric field intensity at

point ~r is obtained from eqs. (10) and (12) as

~E =
Q1(~r − ~r1)

4πε0 | ~r − ~r1 |3
+

Q2(~r − ~r2)

4πε0 | ~r − ~r2 |3
+ ....+

QN(~r − ~rN)

4πε0 | ~r − ~rN |3
(14)

or

~E =
1

4πε0

n∑
k=1

Qk(~r − ~rk)
| ~r − ~rk |3

(15)



Electric Field due to continuous charge distribu-
tion

So far we have considered only forces and electric field due to point charges, which

are essentially charges occupying very small physical space. It is also possible to have

continuous charge distribution along line, surface, or in a volume.

It is customary to denote the line charge density, surface charge density, and volume

charge density by ρ` (in C/m), ρs (in C/m2), and ρv (in C/m3). These must not be

confused with ρ (without subscript), used for radial distance in cylindrical coordinates.



Electric Field due to continuous charge distribu-
tion

• For a linear charge density ρ` (C/m), the elemental charge dQ = ρ` d` and the

differential field at a point P would be

d ~E =
ρ`d`

4πε0R2
âR (16)

→
dE

P(x, y, z)

ρ
l

dQ= ρ
l
 dl

R
→

L

The total field at the observation point P is obtained by integrating over the line or

curve L

~E =

∫
L

ρ` âR

4πε0R2
d` (17)



Electric Field due to continuous charge distribu-
tion

• For a surface charge density ρs (C/m2), the elemental charge dQ = ρs dS and the

differential field at a point P would be

d ~E =
ρsds

4πε0R2
âR (18)

→
dE

P(x, y, z)

ρ
sdQ= ρ

s
 ds

R
→

S

The total field at the observation point P is obtained by integrating over surface S

~E =

∫
s

ρs âR

4πε0R2
dS (19)



Electric Field due to continuous charge distribu-
tion

• For a volume charge density ρ (C/m3), the elemental charge dQ = ρv dv and the

differential field at the point P would be

d ~E =
ρvdv

4πε0R2
âR (20)

→
dE

P(x, y, z)

ρ

dQ= ρ dν

R
→

ν

The total field at the observation point P is obtained by integrating over volume v

~E =

∫
v

ρv âR

4πε0R2
dv (21)



Problems

1. Point charges 1 mC and −2 mC are located at (3,2,−1) and (−1,−1,4) respec-

tively. Calculate the electric force on a 10 nC charge located at (0,3,1) and the

electric field intensity at that point.

2. Point charges 5 nC and −2 nC are located (2,0,4) and (−3,0,5), respectively.

(a) Determine the force on a 1 nC point charge located at (1,−3,7).

(b) Find the electric field ~E at (1,−3,7).

3. A circular ring of radius a carries a uniform charge ρ` C/m and is placed on the

xy-plane with axis the same as the z-axis.

(a) Show that

~E(0,0, h) =
ρ`ah

2ε0[h2 + a2]3/2
âz

(b) What values of h gives the maximum value of ~E?

(c) If the total charge on the ring is Q, find ~E as a→ 0.

4. The finite sheet 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 on the z = 0 plane has a charge density

ρs = xy(x2 + y2 + 25)3/2 nC/m2. Find

(a) The total charge on the sheet.

(b) The electric field at (0,0,5).

(c) The force experimented by a −1 mC charge located at (0,0,5).



5. A square plate described by −2 ≤ x ≤ 2, −2 ≤ y ≤ 2, z = 0 carries a charge 12

| y | mC/m2. Find the total charge on the plate and the electric field intensity at

(0,0,10).

6. Planes x = 2 and y = 3, respectively, carry charges 10 nC/m2 and 15 nC/m2. If

the line x = 0, z = 2 carries charge 10π nC/m, calculate ~E at (1,1,−1) due to

the three charge distributions.

7. Planes x = 2 and y = 3, respectively, carry charges 10 nC/m2 and 15 nC/m2. If

the line x = 0, z = 2 carries charge 10π nC/m is rotated through 900 about the

point (0,2,2) so that it become x = 0, y = 2, find ~E at (1,1,−1).

8. Charges +Q and +3Q separated by a distance 2 m. A third charge is located

such that the electrostatic system is in equilibrium. Find the location and the

value of the third charge in terms of Q.

9. A point charge Q is located at point P (0,−4,0), while a 10 nC charge is uniformly

distributed along a circular ring as shown in the next Figure. Find the value of Q

such that E(0,0,0) = 0.

x

y

2

2-2 0



10. (a) Show that the electric field at point (0,0, h) due to the rectangle described

by −a ≤ x ≤ a, −b ≤ y ≤ b, z = 0 carrying uniform charge ρs C/m2 is

~E(0,0, h) =
ρs

πε0
tan−1[

ab

h(a2 + b2 + h2)1/2
] âz

(b) If a = 2, b = 5, ρs = 10−5, find the total charge on the plate and the electric

field intensity at (0,0,10).



ELECTRIC FLUX DENSITY



Electric Field Intensity

The electric field intensity at point ~r due to a point charge located at ~r′ is readily

obtained from eq.(1),

~E =
Q

4πε0R2
âR =

Q(~r − ~r′)
4πε0 | ~r − ~r′ |3

(1)

For N point charges Q1, Q2, ..., QN located at ~r1, ~r2, ..., ~rN , the electric field intensity at

point ~r is obtained from eqs. (2) and (3) as

~E =
Q1(~r − ~r1)

4πε0 | ~r − ~r1 |3
+

Q2(~r − ~r2)

4πε0 | ~r − ~r2 |3
+ ....+

QN(~r − ~rN)

4πε0 | ~r − ~rN |3
(2)

or

~E =
1

4πε0

N∑
k=1

Qk(~r − ~rk)
| ~r − ~rk |3

(3)



Electric Field Intensity

• For a linear charge density ρ` (C/m), the elemental charge dQ = ρ` d` and the

differential field at a point P would be

d ~E =
ρ`d`

4πε0R2
âR (4)

→
dE

P(x, y, z)

ρ
l

dQ= ρ
l
 dl

R
→

L

The total field at the observation point P is obtained by integrating over the line or

curve L

~E =

∫
L

ρ` âR

4πε0R2
d` (5)



Electric Field Intensity

• For a surface charge density ρs (C/m2), the elemental charge dQ = ρs dS and the

differential field at a point P would be

d ~E =
ρsds

4πε0R2
âR (6)

→
dE

P(x, y, z)

ρ
sdQ= ρ

s
 ds

R
→

S

The total field at the observation point P is obtained by integrating over surface S

~E =

∫
s

ρs âR

4πε0R2
dS (7)



Electric Field Intensity

• For a volume charge density ρ (C/m3), the elemental charge dQ = ρv dv and the

differential field at the point P would be

d ~E =
ρV dV

4πε0R2
âR (8)

→
dE

P(x, y, z)

ρ

dQ= ρ dν

R
→

ν

The total field at the observation point P is obtained by integrating over volume v

~E =

∫
V

ρV âR

4πε0R2
dV (9)



Electric Flux Density

• Eqs. (1) to (9) show that the electric field intensity is dependent on the medium

in with the charge is placed (free space in this case ε0).

• Electric field ~E is perpendicular to area A; the angle between ~E and line perpen-

dicular to the surface is zero.

• The flux is ΦE = EA.



Electric Flux Density

• Area A is tilted at an angle Φ from the perpendicular to ~E.

• The flux is ΦE = EA cos(Φ).



Electric Flux Density

• Area A is parallel to ~E (tilted at 900 from the perpendicular to ~E).

• The flux is ΦE = EA cos(900) = 0.



Electric Flux Density

• Suppose a new vector field ~D is defined by

~D = ε0 ~E (10)

• The electric flux Ψ in terms of ~D is

Ψ =

∫
s

~D · d~S (11)

• The electric flux is measured in coulombs. The vector field ~D is called the electric

flux density and is measured in coulombs per square meter.



GAUSS’S LAW - MAXWELL’S EQUATION



Gauss’s Law

• Gauss’s law constitutes one of the fundamental laws of electromagnetism.

Gauss’s law state that the total electric flux Ψ through any closed surface is

equal to the total charge enclosed by that surface

• Thus

Ψ = Qenc (12)

• That is,

Ψ =

∮
s

dΨ =

∮
s

~D · d~S =

total charge enclosed Q =

∫
V

ρV dV (13)

• or

Q =

∮
s

~D · d~S =

∫
V

ρV dV (14)



Gauss’s Law

• By applying divergence theorem to the middle term in eq (14), we have

∮
s

~D · d~S =

∫
V

∇ · ~DdV (15)

• Comparing the two integrals results is

ρV = ∇ · ~D (16)

• Eq (16) is the first of the four Maxwell’s equations to be derived.

• This equation states that the volume charge density is the same as the divergence

of the electric flux density.

• Equations (14) and (16) are basically stating Gauss’s law in different ways; eq.

(14) is the integral form, whereas eq. (16) is the differential or point form of

Gauss’s law.

• Gauss’s law provides an easy means of finding ~E or ~D for symmetrical charge

distributions such as a point charge, an infinite line charge, an infinite cylindrical

surface charge, and a spherical distribution of charge.



Gauss’s Law

• The divergence of a static field is used to determine when a region has sources

(net positive charge) or sinks (net negative charge). By definition, the divergence

of the electric lux density at a point P is

div ~D = ∇ · ~D = lim
∆V→0

∮
S
~D · d~S
∆V

= lim
∆V→0

Qenclosed

∆V
= ρ (17)

where S is the boundary of ∆V .

• For a general vector ~A, the definitions for the divergence in the three coordinate

systems of interes are:

Cartesian : ∇ · ~A =
∂Ax

∂x
+
∂Ay

∂y
+
∂Az

∂z
(18)

Cylindrical : ∇ · ~A =
1

r

∂(rAr)

∂r
+

1

r

∂Aφ

∂φ
+
∂Az

∂z
(19)

Spherical : ∇ · ~A =
1

r2

∂(r2Ar)

∂r
+

1

r sin θ

∂(Aθ sin θ)

∂θ
+

1

r sin θ

∂Aφ

∂φ
(20)



APPLICATIONS OF GAUSS’S LAW



Gauss’s Law

• For applying Gauss’s law to calculate the electric field involves first knowing

whether symmetry exist.

• Once it has been found that symmetric charge distribution exit, we construct a

mathematical closed surface (known as Gaussian surface).

• The surface is chosen such that ~D is normal or tangential to the Gaussian surface.

• When ~D is normal to the surface, ~D · d~S = DdS because ~D is constant on the

surface.

• When ~D is tangential to the surface, ~D · d~S = 0.

• Thus we must choose a surface that has some of the symmetry exhibited by the

charge distribution.



Problems

NOTE: The integral and point forms of Gauss’ law are related by the divergence

theorem given by

Ψ =

∮
S

~D · d~S =

∫
V

(∇ · ~D)dV =

∫
V

ρV dV = Qenclosed (21)

where S is the closed surface boundary of the volume V .

1. Example: In the region 0 < r < 1 m, ~D = (−2x10−4/r) âr (C/m2) and for r > 1

m, ~D = (−4x10−4/r2) âr (C/m2) in spherical coordinates. Find the charge density

in both region.

2. Charge in the form of a plane sheet with density ρs = 40 (µC/m2) is located at

z = −0.5 (m). A uniform line charge of ρ` = −6 (µC/m) lies along the y−axis.

What net flux crosses the surface of a cube 2 (m) on an edge, centered at the

origin of coordinate system?

3. Determine the flux crossing a 1 mm by 1 mm area on surface of a cylindrical shell

at r = 10 m, z = 2 m, ψ = 53.3o if ~D = 2x âx + 2(1− y) ây + 4z âz.



ELECTRIC POTENTIAL



Electric Potential

• We can obtain the electric file intensity ~E due to a charge distribution from

Coulomb’s law in general or, when the charge distribution is symmetric, from

Gauss’s law.

• Another way of obtaining ~E is from the electric scalar potential V .

• In a sense, this way of finding ~E is easier because it is easier to handle scalars

than vectors.

• Suppose we wish to move a point charge Q from point A to point B in a electric

field ~E as show in Figure 1.

Figure 1 Displacement of point charge Q in an electric field ~E.



Electric Potential

• From Coulomb’s law, the force on Q is ~F = Q~E so that the work done in displacing

the charge by d~̀ is

dW = −~F · d~̀= −Q~E · d~̀ (1)

The negative sing indicate that the work is being done by external agent.

• Thus the total work done, or the potential energy required, in moving Q from A

to B, is

W = −Q
∫ B

A

~E · d~̀ (2)

• Dividing W by Q in eq. (2) gives the potential energy per unit charge. This

quantity, denoted by VAB, is known as the potential difference between points A

and B. Thus

VAB =
W

Q
= −

∫ B

A

~E · d~̀ (3)



Electric Potential

Note that:

• In determining VAB, A is the initial point while B is the final point.

• If VAB is negative, there is a loss in potential energy in moving Q from A to B;

this implies that the work is being done by the field.

• If VAB is positive, there is a gain in potential energy in the movement; an external

agent performs the work.

• VAB is independent of the path taken (to be shown a little later).

• VAB is measured in joules per meter, commonly referred to a volts (V).



Electric Potential

As an example, if the ~E field in Figure 1 is due to a point charge Q located at the

origin, then

~E =
Q

4πε0r2
âr (4)

so eq.(3)

VAB = −
∫ B

A

~E · d~̀= −
∫ rB

rA

Q

4πε0r2
âr · drâr =

Q

4πε0
[

1

rB
−

1

rA
] (5)



Electric Potential

or

VAB = VB − VA (6)

where VB and VA are the potentials (or absolute potentials) at B and A, respectively.

• Thus the potential difference VAB may be regarded as the potential at B with

reference to A.

• Note from eq. (5) that because ~E points in the radial direction, any contribution

from displacement in the θ or φ direction is wiped out by the dot product ~E · d~̀=

E cosαd` = Edr, where α is the angle between ~E and d~̀. Hence the potential

difference VAB is independent of the path as asserted earlier.

• In general, vectors whose line integral does not depend on the path of integration

are called conservative. This ~E is conservative.



Electric Potential

• The potential at any point (rB → r) due to charge Q located at the origin is

V =
Q

4πε0r
(7)

• The potential at any point is the potential difference between that point and a

chosen point (or reference point) at which the potential is zero.

• In other words, by assuming zero potential at infinity, the potential at a distance

r from the point charge is the work done per unit cherge by an external agent in

transferring a test charge from infinity to that point. Thus

V = −
∫ r

∞
~E · d~̀ (8)



Electric Potential

• If the point charge Q in eq. (7) is not located at the origin but at a point whose

position vector is ~r′, the potential V (x, y, z) or simply V (~r) at ~r becomes

V =
Q

4πε0 | ~r − ~r′ |
(9)

• The superposition principle, wich we applied to electric field, applies to poten-

tial. For n point charges Q1, Q2, ..., Qn located at points with position vectors

~r1, ~r2, ..., ~rn, the potential at ~r is

V (~r) =
Q1

4πε0 | ~r − ~r1 |
+

Q2

4πε0 | ~r − ~r2 |
+ ....+

Qn

4πε0 | ~r − ~rn |
(10)

or

V (~r) =
1

4πε0

n∑
k=1

Qk

| ~r − ~rk |
point charges (11)



Electric Potential

• For continuous charge distribution, we replace Q in eq. (11) with charge element

ρ` d`, ρS dS, or ρV dV and the summation becomes an integration, so the potential

at ~r become

V (~r) =
1

4πε0

∫
L

ρ`(~r′) d`
′

| ~r − ~r′ |
line charge (12)

V (~r) =
1

4πε0

∫
S

ρS(~r′) dS
′

| ~r − ~r′ |
surface charge (13)

V (~r) =
1

4πε0

∫
V

ρV (~r′) dV
′

| ~r − ~r′ |
volume charge (14)

where the primed coordinates are used customarily to denote source point location

and the unprimed coordinates refer to field point (the point at which V is to be

determined).



Electric Potential
The following points should be noted:

• We recall that in obtaining eqs. (7) to (14), the zero potential (reference) point

has been chosen arbitrarily to be at infinity. If any other point is chosen as

reference, eq.(9), for example, becomes

V =
Q

4πε0r
+ C (15)

where C is a constant that is determined at the chosen point of reference. The

same idea applies to (9) to (14).

• The potential at a point can be determined in two ways depending on whether

the charge distribution or ~E is known. If the charge distribution is known, we use

on of the (7) to (14) depending on the charge distribution.

• If ~E is known, we simply use

V = −
∫
~E · d~̀+ C (16)

• The potential difference VAB can be found generally from

VAB = VB − VA = −
∫ B

A

~E · d~̀=
W

Q
(17)



RELATIONSHIP BETWEEN ~E and V



Relationship between ~E and V

• The potential difference between points A and B is independent of the path taken.

Hence

VBA = −VAB
that is, VBA + VAB =

∮
~E · d~̀= 0 or∮

L

~E · d~̀= 0 (18)

This shows that the line integral of ~E along a closed path as shown in Figure 3,

must be zero.

Figure 3 The conservative nature of an electric field.



Relationship between ~E and V

• Physically, this implies that no net work is done in moving a charge along a closed

path in an electrostatic field.

• Applying Stokes’s theorem to eq.(18) gives∮
L

~E · d~̀=

∫
s

(∇× ~E) · d~S = 0 (19)

or

∇× ~E = 0 (20)

• Any vector field that satisfies eq.(19) or eq.(20) is said to be conservative, or

irrotational.

• In other words, vectors whose line integral does not depend on the path of inte-

gration are called conservative vectors.

• Thus an electrostatic field is a conservative field. Equations (19) or (20) is

referred as Maxwell’s equation (the second Maxwell equation to be derived) for

static electric field.



Relationship between ~E and V

• Equation (19) is the integral form, and eq. (20) is the differential form; they

both depict the conservative nature of and electrostatic field.

• From the way we defined potential, V = −
∫
~E · d~̀, it follow that

dV = − ~E · d~̀= −Exdx− Eydy − Ezdz (21)

• But from calculus of multivariables, a total charge in V (x, y, z) is the sum of

partial charges with respect to x, y, z variables:

dV =
∂V

∂x
dx+

∂V

∂y
dy +

∂V

∂z
dz (22)

• Comparing eqs. (21) and (22)

~E = −∇V (23)

that is, the electric field is the gradient of V .



Relationship between ~E and V

• The negative sign shows that the direction of ~E is opposite to the direction in

which V increases; ~E is directed from higher to lower levels of V .

• Equation (23) shows another way to obtain ~E field apart from using Coulomb’s

or Gauss’s law.

• One may wonder how one function V can possibly contain all the information

that the three components of ~E carry.



Problems

1. An electrostatic field is given by ~E = x
2

+ 2y âx + 2x ây. Find the work done in

moving a point charge Q = −20µC

(a) From the origin to (4,0,0) m.

(b) From (4,0,0) m to (4,2,0) m.

(c) From (4,2,0) m to (0,0,0) m.

2. Two point charges −4µC and 5µC are located at (2,−1,3) and (0,4,−2), respec-

tively. Find the potential at (1,0,1).

3. A total charge of 40/3 nC is uniformly distributed in the form of a circular disk

of radius 2m. find the potential due to the charge at point of the axis, 2m from

the disk.

4. A point charge of 5 nC is located at (−3,4,0), while line y = 1, z = 1 carries

uniform charge 2 nC/m.

(a) If V = 0 V at O(0,0,0), find V at A(5,0,1).

(b) If V = 100 V at B(1,2,1), find V at C(−2,5,3).

(c) If V = −5 V at O, find VBC.



Problems

1. Given the potential V = 10
r3 sin θ cosφ,

(a) Find the electric flux density ~D at (2, π/2,0).

(b) Calculate de work done in moving a 10 µC charge from point A(1,300,1200)

to B(4,900,600).



Energy Density in Electrostatic Fields



Energy Density in Electrostatic Fields

• To determine the energy present in a assembly of charges, we must first determine

the amount of work necessary to assemble them.

• Suppose we wish to position three point charge Q1, Q2 and Q3 in an initially

empty space shown shaded in Figure 1.

Figure 1 Assembling of charges.

• No work is required to transfer Q1 from infinity to P1 because the space is initially

charge free and there is no electric field.

W = −Q1

∫ B

A

~E · d~̀= 0 (1)



Energy Density in Electrostatic Fields

• The work to transferring Q2 from infinity to P2 is equal to the product of Q2 and

the potential V21 at P2 due to Q1.

• Similarly, the work done in positioning Q3 at P3 is equal to Q3(V32 + V31), where

V32 and V31 are the potentials at P3 due Q2 and Q1, respectively.

• Hence the total work done in positioning the three charges is

WE = W1 +W2 +W3

= 0 +Q2V21 +Q3(V31 + V32) (2)

• If the charges were positioned in reverse order,

WE = W3 +W2 +W1

= 0 +Q2V23 +Q1(V12 + V13) (3)

where V23 is the potential at P2 due to Q3, V12 and V13 are, respectively, the

potential at P1 due to Q2 and Q3.



Energy Density in Electrostatic Fields

• Adding eqs. (2) and (3) gives

2WE = Q1(V12 + V13) +Q2(V21 + V23) +Q3(V31 + V32)

= Q1V1 +Q2V2 +Q3V3 (4)

• or

WE =
1

2
(Q1V1 +Q2V2 +Q3V3) (5)

where V1, V2 and V3 are the total potentials at P1,P2 and P3, respectively.

• In general, if there are n point charges, eq.(5) become

WE =
1

2

n∑
k=1

QkVk ( in joules) (6)



Energy Density in Electrostatic Fields

• If, instead of point charges, the region has a continuous charge distribution, the

summation in eq.(6) becomes integration; that is,

WE =
1

2

∫
L

ρ`V d` (line chrage) (7)

WE =
1

2

∫
S

ρSV dS surface chrage (8)

WE =
1

2

∫
ν

ρνV dν volume chrage (9)

• Since ρv = ∇ · ~D, eq.(9) can be further developed to yield

WE =
1

2

∫
ν

(∇ · ~D)V dν volume chrage (10)

• But for any vector ~A and escalar V , the identity ∇ · V ~A = ~A · ∇V + V (∇ · ~A) or

(∇ · ~A)V = ∇ · V ~A− ~A · ∇V (11)

holds.



Energy Density in Electrostatic Fields

• Applying the identity in eq.(11) to (10), we get

WE =
1

2

∫
ν

(∇ · ~D)V dν =
1

2

∫
ν

(∇ · V ~D) dν −
1

2

∫
ν

( ~D · ∇V ) dν (12)

• But applying divergence theorem to the first term on the right-hand side of this

equation, we have

WE =
1

2

∮
S

(V ~D) · d~S −
1

2

∫
ν

( ~D · ∇V ) dν (13)

• Hence, eq.(13) reduce to

WE = −
1

2

∫
ν

( ~D · ∇V ) dν =
1

2

∫
ν

( ~D · ~E) dν (14)

• and since ~E = −∇V and ~D = ε0 ~E

WE =
1

2

∫
ν

( ~D · ~E) dν =
1

2

∫
ν

ε0E
2 dν (15)



Energy Density in Electrostatic Fields

• From this, we can define electrostatic energy density wE (in J/m3) as

wE =
dWE

dν
=

1

2
~D · ~E =

1

2
ε0E

2 =
D2

2ε0
(16)

• so eq.(14) may be written as

WE =

∫
ν

wEdν (17)



MAGNETOSTATICS



Magnetostatic

• In the last sections, we limited our discussions to static electric fields characterized

by ~E or ~D.

• We now focus our attention on static magnetic fields, which are characterized by
~H or ~B.

• There are similarities and dissimilarities between electric and magnetic fields.

• As ~E and ~D are related according to ~D = ε ~E for linear, isotropic material space,
~H and ~B are realted according to ~B = µ ~H.



Magnetostatic
• Analogy between Electric ( ~D = ε ~E) and Magnetic Fields ( ~B = µ ~H).

Term Electric Magnetic

Basic laws ~F = Q1Q2

4πεr2 âr d ~B = µId~̀×âr
4πR2∮

~D · d~S = Qenc

∮
~H · d~̀= Ienc

Force law ~F = Q~E ~F = Q~u× ~B

Source element dQ Q~u = Id~̀

Field intensity E = V
`

(V/m) H = I
`

(A/m)

Flux density ~D = ψ
S

(C/m2) ~B = ψ
S

(Wb/m2)

Relationships between fields ~D = ε ~E ~B = µ ~H

Potentials ~E = −∇V ~H = −∇Vm ( ~J = 0)

V =
∫

ρ` d`
4πεr

A =
∫

µI d`
4πR

Flux ψ =
∫
~D · d~S ψ =

∫
~B · d~S

ψ = Q = CV ψ = LI

I = C dV
dt

V = LdI
dt

Energy density WE = 1
2
~D · ~E Wm = 1

2
~B · ~H

Poisson’s equation ∇2V = ρV
ε

∇2A = −µ~J



Magnetostatic

• A definite link between electric and magnetic fields was established by Hans Chris-

tian Oersted (1777-1851) in 1820, Danish professor of physics.

• As we have noticed, an electrostatic field is produced by static or stationary

charges.

• If the charges are moving with constant velocity, a static magnetic (or magneto-

static) field is produced.

• A magnetostatic field is produced by a constant current flow (or direct current).

• This current flow may be due to magnetization currents as in permanent magnets,

electron-beam currents as in vacuum tubes, or condition currents as in current-

carrying wires.

• In this section, we consider magnetic fields in free space due to direct current.

Motors, transformers, microphones, compasses, telephone bell ringers, television

focussing controls, advertising displays, magnetically levitated high-speed vehicles,

memory store, magnetic separators, and so on, which play an important role in

our everyday life, could not have been developed without an understanding of

magnetic phenomena.



Magnetostatic

• There are two major laws governing magnetostatic fields: (1) Biot-Savart’s law,

and (2) Ampère’s law.

• Like Coulomb’s law, Biot-Savart’s law is the general law of magnetostatics.

• Just as Gauss’s law is a special case of Coulomb’s law, Ampère’s law is a special

case of Biot-Savart’s law and is easily applied in problems involving symmetrical

current distribution.



Biot-Savart’s Law

• Biot-Savart law states that the differential magnetic field intensity dH produced

at a point P , as shown in Figure 1, by the differential current element Id` is

proportional to de product Id` and the sine of the angle α between the element

and the line joining P to the element and is inversely proportional to the square

of the distance R between P and the element.

Figure 1 Magnetic field d ~H at P due to current element Id~̀.

• That is,

dH =
Id` sinα

4πR2
(1)



Biot-Savart’s Law

• From the definition of cross product, it is easy to notice that eq.(1) is better put

in vector form as

d ~H =
Id~̀× âR

4πR2
=
Id~̀× ~R

4πR3
(2)

where R =| ~R | and âR = ~R/R; ~R and d~̀ are illustrated in Figure 1.

• The direction of d ~H can be determined by the right-hand rule with the right-

hand thumb pointing in the direction of the current and the right-hand fingers

encircling the wire in the direction of d ~H as shown in Figure 2.

Figure 2 Determining the direction of d ~H using (a) the right-hand rule or (b) the

right-handed-screw rule.



Biot-Savart’s Law

• Just as we can have different charge configurations, we can have different current

distributions: line current, surface current, and volume current as shown in Figure

3.

Figure 3 Current distributions: (a) line current, (b) surface current, (c) volume current.

• If we define ~K as the surface current density in A/m and ~J as the volume current

density in A/m2, the source element are related as

Id~̀= ~KdS = ~JdV (3)



Biot-Savart’s Law

• Thus in terms of the distributed current source, the Biot-Savart law as in eq.(2)

become

~H =

∫
L

Id~̀× âR
4πR2

line current (4)

~H =

∫
S

~KdS × âR
4πR2

surface current (5)

~H =

∫
V

~JdV × âR
4πR2

volume current (6)

where âR is a unit vector pointing from the differential element of current to the

point of interes.



Biot-Savart’s Law

• Circular lop of radius ρ, carries a direct current I

~H =
Iρ2

2(ρ2 + z2)3/2
âz (7)

z = 0, ~H =
I

2ρ
âz (8)



Biot-Savart’s Law

• A solenoid of length `, radius a and N turns of wire carries current I.

~H =
IN

2
√
a2 + `2

4

âz (9)

` >> a, ~H =
IN

`
âz (10)



AMPÈRE’S CIRCUIT LAW



Ampère’s circuit law

• States that the integral of ~H around a closed path is the same as the net current

Ienc enclosed by the path.

• In other words, the circulation of ~H equals Ienc: that is,∮
~H · d~̀= Ienc (1)

• Ampèr’s law is similar to Gauss’s law, since Ampèr’s law is easily applied to

determine ~H when the current distribution is symmetrical.

• By applying Stoke’s theorem to the left-hand side of eq. (1), we obtain

Ienc =

∮
ζ

~H · d~̀=

∫
S

(∇× ~H) · d~S (2)



Ampère’s circuit law

• But

Ienc =

∫
S

~J · d~S, (3)

where ~J is current density.

• Comparing the surface integrals in eqs. (2) and (3) clearly reveals that

∇× ~H = ~J (4)

• This is the third Maxwell’s equation to be derived; it is essentially Ampère’s law

in differential (or point) form, whereas eq. (1) is the integral form.

• From eq. (4), we should observe that ∇ × ~H = ~J 6= 0; that is a magnetostatic

field is not conservative.



MAGNETIC FLUX DENSITY



Magnetic Flux Density

• The magnetic flux density ~B is similar to the electric flux density ~D.

• As ~D = εo ~E in free space, the magnetics flux density ~B is related to the magnetic

field intensity ~H according to

~B = µo ~H (1)

where µo is a constant known as the permeability of free space. The constant is

in henrys por meter (H/m) and has the value of

µo = 4π × 10−7 H/m (2)

• The magnetic flux through a surface S is given by

ψ =

∫
S

~B · d~S (3)

where the magnetic flux ψ is in Webers (Wb) and the magnetic flux density is in

Webers per square meter (Wb/m2) or Tesla (T).



Magnetic Flux Density

•

ψ =

∫
S

~B · d~S

Figure 1 Magnetic flux



Magnetic Flux Density

• A magnetic flux line is a path to which ~B is tangential a every point on the line.

Figure 2: a) Electric Dipole and b) Magnetic Dipole



Magnetic Flux Density

• In an electrostatic field, the flux passing through a closed surface is te same as

the charge enclosed; that is ψ =
∮
S
~E · d~S = Q.

• Thus it is possible to have an isolate electric charge as shown in Figure 3a).

• Which also reveals that electric flux lines are not necessarily closed.

Figure 3: a) Isolate electric charge and b) Magnetic Dipole



Magnetic Flux Density

• Unlike electric flux flied, magnetic flux lines always close upon themselves as in

Figure 3b).

• This is because it is not possible to have isolated magnetic poles (or magnetic

charges).

• And isolated magnetic charge does not exist. Thus the total flux through a closed

surface in a magnetic field must be zero; that is, ψ =
∮
S
~B · d~S = 0.

Figure 3: a) Isolate electric charge and b) Magnetic Dipole



Magnetic Flux Density

•

ψ =

∮
S

~B · d~S = 0 (4)

• This equation is referred to as the law of conservation of magnetic flux or Gauss’s

law for magnetostatic fields.

• By applying the divergence theorem, we obtain

ψ =

∮
S

~B · d~S =

∫
V

∇ · ~BdV = 0 (5)

or

∇ · ~B = 0 (6)



MAGNETIC SCALAR AND VECTOR POTENTIALS



Magnetic scalar and vector potentials

• The magnetic flux through a surface S is given by

ψ =

∫
S

~B · d~S (11)

where the magnetic flux ψ is in Webers (Wb) and the magnetic flux density is in

Webers per square meter (Wb/m2) or Tesla (T).

• The vector magnetic potential ~A (in Wb/m) such that

~B = ∇× ~A (12)

• By substituting eq. (12) in to eq.(11) and applying Stokes’s theorem, we obtain

ψ =

∫
S

~B · d~S =

∫
S

(∇× ~A) · d~S =

∮
`

~A · d` (13)



Magnetic scalar and vector potentials

• We can define

~A =

∫
`

µoI d~̀

4πR
for line charge (8)

~A =

∫
S

µo ~K dS

4πR
for surface current (9)

~A =

∫
ν

µo ~J dν

4πR
for volume current (10)



Magnetic scalar and vector potentials

• We known that for magnetostatic field ∇ · ~B = 0.

• To satisfy last eq. and eq. (2) simultaneously, we can define the vector magnetic

potential ~A (in Wb/m) such that

~B = ∇× ~A (6)

• Just as we define

V =

∫
dQ

4πε0r
(7)



Magnetic scalar and vector potentials

• Just as ~E = −∇V , we define the magnetic scalar potential Vm (in amperes) as

related to ~H according to

~H = −∇Vm if ~J = 0 (3)

• The condition attached to this equation is importan. Combining eq. (3) and

∇× ~H = ~J give

~J = ∇× ~H = ∇× (−∇Vm) = 0 (4)

since Vm must satisfy the condition in eq. (1).

• Thus the magnetic scalar potential Vm is only defined in a region where ~J = 0 as

eq. (3).

• We should also note that Vm satisfies Laplace’s equation just V does for electro-

static field; hence,

∇2Vm = 0, ( ~J = 0) (5)



Magnetic scalar and vector potentials

• We recall that some electrostatics field problems were simplified by relating the

electric potential V to the electric field intensity ~E ( ~E = −∇V ).

• Similarly, we can define a potential associated with magnetostatic field ~B.

• In fact, the magnetic potential could be scalar Vm or vector ~A.

• To define Vm and ~A involves recalling two important identities

∇× (∇V ) = 0 (1)

∇ · (∇× ~A) = 0 (2)

which must always hold for any scalar field V and vector field ~A.



Maxwell’s equations for statics fields

Differential (or Point) Form Integral Form Remarks

∇ · ~D = ρν
∮
S
~D · d~S =

∫
ν
ρνdν Gauss’s law

∇ · ~B = 0
∮
S
~B · d~S = 0 Nonexistence of magnetic monopole

∇× ~E = 0
∮
`
~E · d~̀= 0 Conservative nature of electrostatic field

∇× ~H = ~J
∮
`
~H · d~̀=

∮
S
~J · d~S Ampère’s law



Gauss’s law for electric fields



• The integral form of Gauss’s law

∮
S

~E · n̂da =
qenc

ε0

The left side of this equation is no more than a mathematical description of the

electric flux - the number of electric field lines - passing through a closed surface S,

whereas the right side is the total amount of charge contained within that surface

divided by a constant called the permittivity of free space.

FElectric charge produces an electric field, and the flux of that field passing through

any closed surface is proportional to the total charge contained within that surface.



• The differential form of Gauss’s law

∇ · ~E =
ρ

ε0

The left side of this equation is a mathematical description of the divergence of the

electric field - the tendency of the field to “flow”away from a specified location - and

the right side is the electric charge density divided by the permittivity of free space.

F The electric field produced by electric charge diverges from positive charge and

converges upon negative charge.



Gauss’s law for magnetic fields



• The integral form of Gauss’s law

∮
S

~B · n̂da = 0

In this case, Gauss’s law refers to magnetic flux - the number of magnetic field lines

- passing through a closed surface S. The right side is identically zero.

F The total magnetic flux passing through any closed surface is zero.



• The differential form of Gauss’s law

∇ · ~B = 0

The left side of this equation is a mathematical description of the divergence of the

magnetic field - the tendency of the magnetic field to “flow”more strongly away from

a point than toward it - while the the right side is simply zero.

F The divergence of the magnetic field at any point is zero.



Faraday’s law



• The integral form of Faraday’s law

∮
C

~E · ~dl = −
d

dt

∫
S

~B · n̂da

emf = −
d

dt

∫
S

~B · n̂da (Flux rule)

F Changing magnetic flux through a surface induce an emf - motional electromotive

force - in any boundary path of that surface, and changing magnetic field induces a

circulating electric field.

∮
C

~E · ~dl = −
∫
S

∂ ~B

∂t
· n̂da (alternate form)



• The integral form of Faraday’s law



• The differential form of Faraday’s law

∇× ~E = −
∂ ~B

∂t

The left side of this equation is a mathematical description of the curl of the electric

field - the tendency of the field lines to circulate around a point. The right side

represents rate of change of the magnetic field over time.

F A circulating electric field is produced by a magnetic field that changes with time.



Ampere-Maxwell law



• The integral form of the Ampere-Maxwell law

∮
C

~B · ~dl = µ0(Ienc + ε0
d

dt

∫
S

~E · n̂da)

The left side of this equation is a mathematical description of the circulation of the

magnetic field around a closed path C. The right side include two sources for the

magnetic field; a steady conduction current and a changing electric flux through any

surface S bounded by path C.

F An electric current or a changing electric flux through a surface produces a circu-

lating magnetic field around any path that bounds that surface.



• The integral form of the Ampere-Maxwell law



• The differential form of the Ampere-Maxwell law

∇× ~B = µ0( ~J + ε0
∂ ~E

∂t
)

The left side of this equation is mathematical description of the curl of the magnetic

field - the tendency of the field lines to circulate around a point. The two terms on

the right side represent the electric current density and the time of change of the

electric field.

F A circulating magnetic field is produced by an electric current and by an electric

field that changes with time.



From Maxwell’s Equations to the wave equation



• Gauss’s law for electric fields:

∮
S

~E · n̂da =
qenc

ε0

Divergence−−−−−−→
theorem

∇ · ~E =
ρ

ε0

• Gauss’s law for magnetic fields:

∮
S

~B · n̂da = 0
Divergence−−−−−−→
theorem

∇ · ~B = 0

• Faraday’s law:

∮
C

~E · ~dl = −
d

dt

∫
S

~B · n̂da Stokes′−−−−−→
theorem

∇× ~E = −
∂ ~B

∂t

• Ampere-Maxwell law:

∮
C

~B · ~dl = µ0(Ienc + ε0
d

dt

∫
S

~E · n̂da)
Stokes′−−−−−→
theorem

∇× ~B = µ0( ~J + ε0
∂ ~E

∂t
)



• The wave equation for electric and magnetic fields:

∇2 ~E = µ0ε0
∂2 ~E

∂t2

∇2 ~B = µ0ε0
∂2 ~B

∂t2



• Generalizing Amepere’s Law

∮
ζ

~B · ~dl = µ0(Iencl)

The problem with Ampere’s law in this form is that it is imcomplete. To see why,

let’s consider the process of charging a capacitor.

Conducting wire lead current iC into plate and out of the other; the charge Q increases,

and the field ~E between the plates increases.

The notation iC indicate conduction current to distinguish it form another kind of

current we are about to encounter, called displacement current iD.

Let’s apply Ampere’s law to the circular path shown. The integral
∮
ζ
~B · ~dl around this

path equals µ0(Iencl).



• Generalizing Amepere’s Law

For the plate circular area bounded by the circle, Iencl is just the current iC in the left

conductor.

But the surface that bulges out to the right is bounded by the same circle, and the

current through that surface is zero.

So
∮
ζ
~B · ~dl is equal to µ0(Iencl), and the same time it is equal to zero! This is a clear

contradiction. However, something else is happening on the bulged-out surface.



• Generalizing Amepere’s Law

As the capacitor charges, the electric field ~E and the electric flux ΦE through the

surface are increasing. We can determine their rate of charge in terms of the charge

and current. The instantaneous charge is q = Cu, where C is the capacitance and

u is the instantaneous potential difference. For a parallel-plate capacitor C = ε0A/d,

where A is the plate area and d is the spacing. The potential difference u between

plates is u = Ed, where E is the electric-field magnitude between plates. If this region

is filled with a material with permittivity ε, we replace ε0 by ε everywhere.



• Generalizing Amepere’s Law

Substituting these expressions for C and u into q = Cu, we can express the capacitor

charge q in terms of the electric flux ΦE = EA through the surface:

q = Cu =
εA

d
(Ed) = εΦE (1)

As the capacitor charges, the rate of charge of q is the conduction current, iC = dq/dt.

Taking the derivative of Eq.(??) with respect to time, we get

iC =
dq

dt
= ε

dΦE

dt
(2)

Stretching our imagination a bit, we invent a fictitious displacement current iD in

the region between the plates, defined as

iD = ε
dΦE

dt
(3)



• Generalizing Amepere’s Law

That is, we imagine that the changing flux through the curved (bulged-out) surface

is equivalent, in Ampere’s law, to a conduction current through that surface.

∮
C

~B · ~dl = µ0(iC + iD) (4)

Ampere’s law in this form is obeyed no matter which surface we use in Figure. For

the flat surface, iD is zero; for the curved surface, iC is zero; and iC for the flat surface

equals iD for the curved surface. Equation (??) remains valid in a magnetic material,

provided that the magnetization is proportional to external field and we replace µ0 by

µ.

The fictitious displacement current iD was invented in 1865 by the Scottish physicist

James Clerk Maxwell. There is a corresponding displacement current density jD =

iD/A; using ΦE = EA and dividing Eq.(??) by A, we find

jD = ε
dE

dt
(5)



• The Reality of Displacement Current

You might well ask at this point whether displacement current has any real physical

significance or whether it is just a ruse to satisfy Ampere’s law. Here’s a fundamental

experiment that help to answer that question.

We take a plane circular area between the capacitor plates. If displacement current

really plays the role in Ampere’s law that we have claimed, then there ought to be a

magnetic field in the region between the plates while the capacitor is charging. We

can use our generalized Ampere’s law, including displacement current, to predict what

this field should be.



• The Reality of Displacement Current

To be specific, let’s picture round capacitor plates with radius R. To find the magnetic

field at a point in the region between the plates at a distance r from the axis, we

apply Ampere’s law to a circle of radius r passing through the point, with r < R. The

circle passes through points a and b. The total current enclosed by the circle is jD
times its area, or (iD/πR2)(πr2).

The integral
∮
C
~B · ~dl in Ampere’s law is just B times the circumference 2πr of the

circle, and because iD = iC for the charging capacitor, Ampere’s law become

∮
C

~B · ~dl = 2πrB = µ0
r2

R2
iC (6)

or

B =
µ0

2π

r

R2
iC (7)

This result predict that in the region between the plates ~B is zero at the axis and

increases linearly with distance from the axis. A similar calculation shows that outside

the region between the plates (that is, for r > R), ~B is the same as though the wire

were continuous and the plates no present at all.

When we measure the magnetic field in this region, we find that it really is there and

that it behaves just as Eq.(??) predict. This confirm directly the role of displacement

current as a source of magnetic field. It is now established beyond reasonable doubt

that Mexwell’s displacement current, far from being just an artifice, is a fundamental

fact of nature.




